



# Deep Learning Methods and Software for Reconstruction of The Elementary Particles' Trajectories

**Goncharov Pavel**, Shchavelev Egor, Nikolskaia Anastasia, Rezvaya Ekaterina, Rusov Daniil, Ososkov Gennady

### Deep neural networks to face the tracking crisis challenge



### **Motivation**

- **Particle track reconstruction in dense environments such** as the Run-4 detectors of the High Luminosity Large Hadron Collider (HL-LHC) and of MPD NICA is a **challenging pattern recognition problem**.
- Current algorithms for tracking are highly performant physics-wise and scale badly computation-wise

Machine learning algorithms bring a lot of potential to the tracking problem, thanks to

- their capability to model complex non-linear data dependencies,
- learn effective representations of high-dimensional data through training
- parallelize easily on high-throughput architectures such as GPUs





### TrackNETv3 and RDGraphNet models for track reconstruction



**TrackNETv3:** a local approach that can be treated as **Kalman Filter "analogue"** powered by neural networks



**RDGraphNet:** a global approach, works with **event as a graph**. Hits are nodes and they are fully-connected between adjacent stations. The goal of the network is to **predict which edges are belong to true tracks**.



|                    | BESIII Inner Tracker |              |               | BM@N RUN6  |            | BM@N RUN7           |
|--------------------|----------------------|--------------|---------------|------------|------------|---------------------|
|                    | TrackNETv3           | RDGraphNet   | Kalman filter | TrackNETv2 | RDGraphNet | TrackNETv3 (no clf) |
| Efficiency         | 0.9475               | 0.9548       | 0.9223        | 0.9593     | 0.87       | 0.9830              |
| Ghost rate         | 0.2406               | 0.2596       | 0.0477        | -          | -          | 0.9791              |
| Speed (events/sec) | 74.17 (GPU)          | 283.70 (GPU) | 0.2382 (CPU)  |            |            | 0.4545 (CPU)        |

# LOOT model for primary vertex prediction



Due to the too-high expected rate of data receipt in the SPD experiment, there is a **pileup effect** when more than one event sticks together, so it is necessary to find all primary vertices for all these events to disentangle them.

To address this problem we introduce LOOT - a convolutional neural network that processes all event hits at once, like a three-dimensional image.



#### Result distribution of the coordinates of the true and the predicted vertex (BESIII Monte-Carlo)



# Ariadne: PyTorch Library for Particle Track Reconstruction Using Deep Learning



Ariadne – the first library for deep learning tracking on Python:

- tracking and vertex reconstruction tasks
- rapid prototyping a new NN model
- metrics logging, multiprocessing for data preparation, multi-GPU training
- open source and fully deterministic (https://github.com/t3hseus/ariadne)









# **Conclusion and Outlook**



### Conclusion

- The TrackNETv3 model which operates like a trainable Kalman filter was developed.
- RDGraphNet model that is able to consume the whole event data as a graph was introduced.
- A special convolutional neural network named LOOT was proposed to solve the problem of primary vertex recognition.
- We developed Ariadne the first library for deep learning tracking on Python.
- With the help of Ariadne, we've trained RDGraphNet, TrackNETv3, and LOOT models on Monte-Carlo data from BESIII and BM@N experiments.
- For the BESIII experiment, we achieved more than 94% of track reconstruction efficiency that is superior to the Kalman filter!
- Each of the proposed deep learning models is more than 100 times faster than the Kalman filter.
- Besides, we've trained the regression part of the TrackNETv3 model on BM@N RUN7 data (Ar+Pb interaction) and achieved the descent tracking efficiency equal to 98.3%.
- The LOOT model was successfully trained on the task of primary vertex recognition in the BESIII experiment and showed sufficient results.

### Outlook

- We are going to create the classifier of track candidates for TrackNETv3 required for the BM@N RUN7 data.
- When the full track reconstruction pipeline for BM@N RUN7 is trained, we will run inference on experimental data!
- We have to do a lot of refactoring in Ariadne in order to build a production-ready Python package.
- Besides, now we are training our models LOOT and TrackNETv3 on Monte-Carlo data from SPD.